Tampilkan postingan dengan label komputer. Tampilkan semua postingan
Tampilkan postingan dengan label komputer. Tampilkan semua postingan
Minggu, 17 Juni 2012
Jumat, 11 Mei 2012
teknologi baru 2012
Teknologi terbaru
Beberapa atau banyak perusahaan memang ada yang dengan sengaja
merahasiakan produk-produk terbaru mereka yang akan dirilis dimasa yang
akan datang. Maksud mereka merahasiakan mungkin agar produk baru mereka
bisa menjadi sebuah kejutan bagi publik atau mungkin karena alasan
persaingan bisnis.
Nah, berhubung banyak perusahaan teknologi kini main
rahasia-rahasiaan maka publik kini tidak dapat memprediksi semua gadget
baru yang akan dirilis.
Namun demikian tentu publik sangat menantikan terobosan-terobosan
teknologi baru yang semakin maksimal kedepannya. Berikut adalah 10
Teknologi yang Layak Dinantikan di 2012, seperti yang dirilis di Laman
CNET :
- Google Ice Cream Sandwich
Ice Cream Sandwich merupakan sistem operasi Android versi terbaru 4.0. Sistem operasi ini sudah beredar di pasar pada 2010. - iPad Mini
Apakah Apple akan membuat iPad 7 inchi, beberapa mengatakan ya, beberapa mengatakan tidak. Terutama dengan kesuksesan Kindle Fire Amazon. Semua berharap Apple akan membuat iPad dengan ukuran yang kecil. iPad ini diperkirakan dibanderol US$200. - Ultrabook yang terjangkau
Tahun depan disarankan untuk melupakan netbook yang tidak bertenaga. Ultrabook merupakan penerus Netbook. Untuk harga dari perangkat ringan ini sudah wajar di 2011. - Generasi pasca MacBook Air
Rumor tentang generasi setelah MacBook Pros dan Air versi terbaru dan mungkin akan lebih bagus dengan ukuran 15 inchi. Tahun depan patut ditunggu, apakah MacBook Air akan muncul dengan desain lebih ramping. - Produk Air Play Apple yang semakin terjangkau
Apple Air Play merupakan sebuah fitur wireless streaming yang tersedia di perangkat mobile Apple. Fitur ini memungkinkan pengguna untuk streaming audio dan video melebihi WiFi. Terkecuali Apple TV dan AirPort Express, AirPlay sesuai untuk produk yang cenderung mahal dengan speaker yang lebih banyak.Air Play dapat memotong harga hingga US$100 untuk beberapa produk. Itu diharapkan terwujud pada 2012. - Kindle Fire 2
Kindle Fire merupakan sebuah terobosan besar, meski tidak terlalu bagus. Namun, bisa dibayangkan, Kindle Fire 2 akan lebih disukai. Amazon mungkin merilis tablet 20 inchi yang lebih murah dari harga iPad secara signifikan. Kita tunggu saja. - iPhone 5
Anda mungkin menunggu kehadiran iPhone 5 sepanjang 2011. Kini ada kabar bagus, kemungkinan peluncuran iPhone 5 ini akan dirilis pada Juni atau November. Ini masih belum pasti, namun iPhone 5 akan hadir dengan desain baru dan mampu mendukung jaringan 4G. - Apple iTV
Rumor bahwa Apple akan memasuki pasar TV dalam 2012 akan jadi mengubah permainan dan menjadi pemimpin dalam pasar yang lain. Semua orang menunggu kiprah Apple tersebut. - Playstations Vita
Perangkat genggam game generasi penerus Sony dijadwalkan hadir di Amerika Serikat pada 22 Febuari 2012 dengan stik dual analog, layar sentuh, dan sisi grafis bersaing dengan PS3. Versi WiFi dibanderol US$249, sedangkan versi WiFi 3G dilepas dengan US$299,99 dengan rencana layanan 3G ekstra. Sementara itu, banyak yang berpikir Vita akan mengalami kesulitan, juga memiliki potensi untuk menjadi pukulan yang sangat dibutuhkan bagi Sony, yang dalam beberapa tahun terakhir kurang greget. - Windows 8
Kesatuan adalah tema Windows 8, seperti Microsoft adalah membawa UI Metro yang ditemukan pada smartphone dan Xbox 360 ke PC dan tablet. Word ini sebuah beta yang mungkin hadir segera pada Februari dengan produk akhir yang siap untuk pengiriman pada PC di akhir musim gugur
Senin, 07 Mei 2012
kecerdasaan buatan
Artificial intelligence

Artificial Intelligence (
AI ) atau dalam bahasa Indonesia disebut dengan kecerdasan buatan. Intelligence
yang berarti cerdas dan artificial adalah buatan. Kecerdasan buatan yaitu mesin
mampu berpikir, menimbang tindakan yang diambil, dan mampu mengambil keputusan
seperti yang dilakukan manusia. Beberapa macam bidang yang menggunakan kecerdasan buatan antara lain sistem
pakar, permainan komputer (games), logika fuzzy, jaringan syaraf tiruan dan robotika.
Berikut beberapa definisi dari para ahli
mengenai kecerdasan buatan
·
H.A.Simon (1897) :
Kecerdasan buatan (AI) merupakan
kawasan penelitian, aplikasi dan instruksi yang terkait dengan pemrograman
komputer untuk melakukan sesuatu hal yang dalam pandangan manusia adalah
cerdas.
·
Rich and Knight (1991) :
Kecerdasan buatan (AI) merupakan
sebuah studi tentang bagaimana membuat komputer melakukan hal-hal yang pada
saat ini dapat di lakukan lebih baik oleh manusia.
·
Encyclopedia britannica :
Kecerdasan buatan(AI) merupakan
cabang ilmu dari ilmu komputer yang dalam mempresentasi pengetahuan lebih
banyak menggunakan bentuk simbol-simbol dari pada bilangan, dan memproses
informasi berdasarkan metode heuristik atau dengan berdasarkan sejumlah aturan.
Tujuan Artificial Intelligence
Menurut
Winston dan Prendergast 1984 tujuan
dari kecerdasan buatan adalah :
1.
Membuat mesin menjadi lebih pintar ( Tujuan utama )
2.
Memahami apa itu kecerdasan ( Tujuan ilmiah )
3.
Membuat mesin lebih bermanfaat ( Tujuan
entrepreneurial )
Kelebihan dan Kekurangan Kecerdasan Buatan
Kelebihan Kecerdasan Buatan :
©
Kecerdasan buatan lebih bersifat permanen.
©
Kecerdasan buatan mudah diduplikasi dan disebarkan.
©
Kecerdasan buatan bersifat konsisten.
©
Kecerdasan buatan dapat di dokumentasi.
©
Kecerdasan buatan dapat mengerjakan pekerjaan lebih
cepat dibanding dengan kecerdasan alami.
©
Kecerdasan buatan lebih hemat.
©
Kecerdasan buatan dapat mengerjakan pekerjaan lebih
baik dibanding kecerdasan alami.
Kekurangan Kecerdasan Buatan:
-
Bekerja dengan input – input simbolik.
-
Kecerdasan buatan hanya dapat digunakan secara
terbatas.
-
Tidak kreatif
Faham Pemikiran
Secara garis besar, AI terbagi ke
dalam dua faham pemikiran yaitu AI Konvensional dan Kecerdasan Komputasional
(CI, Computational Intelligence).
AI konvensional kebanyakan
melibatkan metoda-metoda yang sekarang diklasifiksikan sebagai pembelajaran
mesin, yang ditandai dengan formalisme dan analisis statistik. Dikenal juga
sebagai AI simbolis, AI logis, AI murni dan AI
cara lama (GOFAI, Good Old Fashioned
Artificial Intelligence).
Metoda-metodanya meliputi:
·
Sistem pakar: menerapkan
kapabilitas pertimbangan untuk mencapai kesimpulan. Sebuah sistem pakar dapat
memproses sejumlah besar informasi yang diketahui dan menyediakan
kesimpulan-kesimpulan berdasarkan pada informasi-informasi tersebut.
·
Petimbangan
berdasar kasus
·
Jaringan
Bayesian
·
AI
berdasar tingkah laku: metoda modular pada pembentukan sistem AI secara manual
Kecerdasan komputasional melibatkan pengembangan atau pembelajaran interaktif (misalnya
penalaan parameter seperti dalam sistem koneksionis). Pembelajaran ini
berdasarkan pada data empiris dan diasosiasikan dengan AI non-simbolis, AI yang
tak teratur dan perhitungan lunak. Metoda-metoda pokoknya meliputi:
·
Jaringan Syaraf: sistem dengan kemampuan
pengenalan pola yang sangat kuat.
·
Sistem Fuzzy:
teknik-teknik untuk pertimbangan di bawah ketidakpastian, telah digunakan
secara meluas dalam industri modern dan sistem kendali produk konsumen.
·
Komputasi
Evolusioner: menerapkan konsep-konsep yang terinspirasi secara
biologis seperti populasi, mutasi dan survival of the fittest
untuk menghasilkan pemecahan masalah yang lebih baik.
Metoda-metoda ini
terutama dibagi menjadi algoritma evolusioner (misalnya algoritma genetik) dan kecerdasan
berkelompok (misalnya algoritma
semut).
Dengan sistem cerdas hibrid,
percobaan-percobaan dibuat untuk menggabungkan kedua kelompok ini. Aturan
inferensi pakar dapat dibangkitkan melalui jaringan syaraf atau aturan produksi
dari pembelajaran statistik seperti dalam ACT-R.
Sebuah pendekatan baru yang menjanjikan disebutkan bahwa penguatan kecerdasan
mencoba untuk mencapai kecerdasan buatan dalam proses pengembangan evolusioner
sebagai efek samping dari penguatan kecerdasan manusia melalui teknologi.
Soft Computing
Soft computing merupakan sebuah inovasi dalam membangun sistem cerdas yaitu sistem yang memiliki keahlian seperti manusia pada domain tertentu, mampu beradaptasi dan belajar agar dapat bekerja lebih baik jika terjadi perubahan lingkungan. Soft computing mengeksploitasi adanya toleransi terhadap ketidaktepatan, ketidakpastian, dan kebenaran parsial untuk dapat diselesaikan dan dikendalikan dengan mudah agar sesuai dengan realita (Prof. Lotfi A Zadeh, 1992).
Soft computing merupakan sebuah inovasi dalam membangun sistem cerdas yaitu sistem yang memiliki keahlian seperti manusia pada domain tertentu, mampu beradaptasi dan belajar agar dapat bekerja lebih baik jika terjadi perubahan lingkungan. Soft computing mengeksploitasi adanya toleransi terhadap ketidaktepatan, ketidakpastian, dan kebenaran parsial untuk dapat diselesaikan dan dikendalikan dengan mudah agar sesuai dengan realita (Prof. Lotfi A Zadeh, 1992).
Metodologi-metodologi
yang digunakan dalam Soft computing adalah :
1.
Logika Fuzzy/Fuzzy Logic (mengakomodasi
ketidaktepatan).
2.
Jaringan Syaraf Tiruan/Neurall Network (menggunakan pembelajaran).
3.
Probabilistic Reasoning (mengakomodasi
ketidakpastian).
4.
Algoritma Genetika/Evolutionary Computing (optimasi)
KONSEP ARTIFICIAL INTELLIGENCE
1.
PERMAINAN (Game)
© Kebanyakan
permainan dilakukan dengan menggunakan sekumpulan aturan.
© Dalam permainan
digunakan apa yang disebut dengan pencarian ruang.
© Teknik untuk
menentukan alternatif dalam menyimak problema ruang merupakan sesuatu yang rumit.
© Teknik tersebut
disebut dengan HEURISTIC.
© Permainan
merupakan bidang yang menarik dalam studi heuristic.
2.
NATURAL LANGUAGE
Suatu teknologi yang memberikan
kemampuan kepada komputer untuk memahami bahasa manusia sehingga pengguna komputer dapat berkomunikasi dengan komputer dengan menggunakan
bahasa sehari -hari.
3.
ROBOTIK DAN SISTEM SENSOR
Sistem sensor, seperti sistem
vision, sistem tactile, dan sistem pemrosesan sinyal jika dikombinasikan dengan
AI, dapat dikategorikan kedalam suatu sistem yang luas yang disebut sistem robotik.
4.
EXPERT SYSTEM
Sistem pakar (Expert System)
adalah program penasehat berbasis computer yang mencoba meniru proses berpikir dan
pengetahuan dari seorang pakar dalam menyelesaikan masalah-masalah spesifik.
Sejarah Artificial Intelligence
Pada awal abad 17, René Descartes
mengemukakan bahwa tubuh hewan bukanlah apa-apa melainkan hanya mesin-mesin
yang rumit. Blaise Pascal menciptakan mesin penghitung digital mekanis pertama
pada 1642. Pada 19, Charles Babbage dan Ada Lovelace bekerja pada mesin
penghitung mekanis yang dapat diprogram.
Bertrand Russell dan Alfred North
Whitehead menerbitkan Principia Mathematica, yang merombak logika formal.
Warren McCulloch dan Walter Pitts menerbitkan “Kalkulus Logis Gagasan yang
tetap ada dalam Aktivitas ” pada 1943 yang meletakkan pondasi untuk jaringan syaraf.
Tahun 1950-an adalah periode usaha
aktif dalam AI. Program AI pertama yang bekerja ditulis pada 1951 untuk
menjalankan mesin Ferranti Mark I di University of Manchester (UK): sebuah
program permainan naskah yang ditulis oleh Christopher Strachey dan program
permainan catur yang ditulis oleh Dietrich Prinz.
Selama tahun 1960-an dan 1970-an,
Joel Moses mendemonstrasikan kekuatan pertimbangan simbolis untuk
mengintegrasikan masalah di dalam program Macsyma, program berbasis pengetahuan
yang sukses pertama kali dalam bidang matematika.
Tahun 1990-an ditandai perolehan
besar dalam berbagai bidang AI dan demonstrasi berbagai macam aplikasi. Lebih
khusus Deep Blue, sebuah komputer permainan catur, mengalahkan Garry Kasparov
dalam sebuah pertandingan 6 game yang terkenal pada tahun 1997. DARPA
menyatakan bahwa biaya yang disimpan melalui penerapan metode AI untuk unit
penjadwalan dalam Perang Teluk pertama telah mengganti seluruh investasi dalam
penelitian AI sejak tahun 1950 pada pemerintah AS.
Tantangan Hebat DARPA, yang dimulai
pada 2004 dan berlanjut hingga hari ini, adalah sebuah pacuan untuk hadiah $2
juta dimana kendaraan dikemudikan sendiri tanpa komunikasi dengan manusia,
menggunakan GPS, komputer dan susunan sensor yang canggih, melintasi beberapa
ratus mil daerah gurun yang menantang.
Jacques de
Vaucanson Pierre Jacques Drotz
Mulai sekitar abad 18 sebagaimana mesin telah menjadi
lebih kompleks, usaha yang keras telah dicoba untuk menciptakan manusia
imitasi. Pada tahun 1736 seorang
penemu dari perancis, Jacques de
Vaucanson (1709-1782) membuat suatu mesin pemain seruling berukuran seperti
seorang manusia yang dapat memainkan 12 melodi nada. Tidak hanya ini saja,
mekanik tersebut dapat memindahkan bibir dan lidahnya secara nyata untuk
mengontrol arus dari angin ke dalam seruling.
Pada tahun 1774
seorang penemu dari perancis, Pierre
Jacques Drotz mencengangkan masyarakat Eropa dengan suatu automation
berukuran sekitar seorang anak laki-laki yang dapat duduk dan menulis suatu
buku catatan. Penemuan ini kemudian dilanjutkan dengan yang lainnya, yaitu
automation yang berupa seorang gadis manis yang dapat memainkan harpsichord. Semuanya itu masih
merupakan proses mekanik yang melakukan gerak dengan telah ditentukan terlebih
dahulu.
Manusia masih berusaha untuk menciptakan mesin yang
lainnya. Pada tahun 1769, dataran
Eropa dikejutkan dengan suatu permainan catur yang dapat menjawab
langkah-langkah permainan catur yang belum ditentukan terlebih dahulu. Mesin
ini disebut dengan Maelzel Chess
Automation dan dibuat oleh Wolfgang
Von Kempelan (1734-1804) dari Hungaria. Akan tetapi mesin ini akhirnya terbakar
pada tahun 1854 di Philadelphia Amerika Serikat.banyak orang tidak percaya akan
kemampuan mesin tersebut. Dan seorang penulis dari Amerika Serikat, Edgar Allan Poe (1809-1849) menulis
sanggahan terhadap mesin tersebut, dia dan kawan-kawannya ternyata benar, bahwa
mesin tersebut adalah tipuan, dan kenyataannya bukanlah aoutomation, tetapi
merupakan konstruksi yang sangat baik yang dikontrol oleh seorang pemain catur
handal yang bersembunyi di dalamnya.
Usaha untuk membuat konstruksi mesin permainan terus
dilanjutkan pada tahun 1914, dan
mesin yang pertama kali didemonstrasikan adalah mesin permainan catur. Penemu
mesin ini adalah Leonardo Torres Y
Quevedo, direktur dari Laboratorio de
Automatica di Madrid, Spanyol. Beberapa tahun kemudian, ide permainan catur
dikembangkan dan diterapkan di komputer oleh Arthur L. Samuel dari IBM dan dikembangkan lebih lanjut oleh Claude Shannon.
Pada abad ke 20, Automation sudah banyak dikembangkan
dan diterapkan terutama pada Angkatan bersenjata Amerika Serikat, berupa program-program
simulasi peperangan. Sekarang ini, perkembangan AI sudah mencapai pada tahap
yang dapat dikatakan fantastis, terutama di bidang-bidang berikut:
-
Game Playing
-
General Problem Solving
-
Natural Language Recognition
-
Speech Recognition
-
Visual Recognition
-
Robotics
-
Dan Sistem
Pakar
Game Playing
Game Playing (permainan game) merupakan bidang AI yang sangat populer berupa permainan antara manusia melawan mesin yang mempunyai intelektual untuk berpikir. Bermain dengan komputer memang menarik, bahkan sampai melupakan tugas utama yang lebih penting. Komputer dapat bereaksi dan menjawab tindakan-tindakan yang diberikan oleh lawan mainnya.
Game playing (permainan game)
merupakan bidang AI yang berupa permainan antara manusia melawan mesin yang memiliki
intelektual untuk berpikir. Bermain dengan computer memang menarik bahkan
sampai melupakan tugas utama yang lebih penting. Komputer dapat bereaksi dan
menjawab tindakan-tindakan yang diberikan oleh lawan mainnya. Ribuan macam
permainan komputer
telah dibuat dan dikembangkan.
Game
adalah permainan komputer yang dibuat dengan teknik dan metode animasi.
Permainan game merupakan bidang AI yang sangat populer berupa permainan antara
manusia melawan mesin yang mempunyai intelektual untuk berpikir. Komputer dapat
bereaksi dan menjawab tindakan-tindakan yang diberikan oleh lawan mainnya.
Salah satu komputer yang
ditanamkan AI untuk game bernama Deep
Blue. Deep Blue adalah
sebuah komputer catur buatan IBM pertama yang memenangkan
sebuah permainan catur melawan seorang juara dunia (Garry Kasparov) dalam waktu
standar sebuah turnamen catur. Kemenangan pertamanya (dalam pertandingan atau
babak pertama) terjadi pada 10
Februari 1996,
dan merupakan permainan yang sangat terkenal.
Kini telah banyak berkembang game AI yang semakin menarik,
interaktif, dan dengan grafis yang sangat bagus. Ditambah dengan kemajuan
teknologi jaringan komputer yang semakin cepat, sudah banyak terdapat game-game
AI yang berbasiskan online.
Tidak sedikit orang yang tertarik dengan game saat ini. Mereka memainkan game
untuk mengisi kekosongan waktu mereka atau pun melatih skill mereka dalam
berpikir.
Tipe Game
I Informasi lengkap = suatu game
dimana permain mengetahui semua langkah yang mungkin terjadi dari dirinya
sendiri dan dari lawan dan hasil akhir dari permainan. Contoh game : catur dan
tic tac toe
Informasi tak lengkap : game
dimana pemain tidak tahu semua kemungkinan langkah lawan. Contoh game : Kartu
Poker dan Brigde karena semua kartu tidak diketahui oleh para pemain.
Sejarah Artificial Intelligence dalam Game
Pada tahun 1769,
dataran Eropa dikejutkan dengan suatu permainan catur yang dapat menjawab
langkah-langkah permainan catur yang belum ditentukan terlebih dahulu. Mesin
ini disebut dengan Maelzel
Chess Automation dan dibuat
oleh Wolfgang Von
Kempelan (1734-1804)
dari Hungaria. Akan tetapi mesin ini akhirnya terbakar pada tahun 1854 di
Philadelphia Amerika Serikat.banyak orang tidak percaya akan kemampuan mesin
tersebut. Dan seorang penulis dari Amerika Serikat, Edgar Allan Poe (1809-1849) menulis sanggahan terhadap
mesin tersebut, dia dan kawan-kawannya ternyata benar, bahwa mesin tersebut
adalah tipuan, dan kenyataannya bukanlah aoutomation, tetapi merupakan
konstruksi yang sangat baik yang dikontrol oleh seorang pemain catur handal
yang bersembunyi di dalamnya.
Usaha untuk membuat
konstruksi mesin permainan terus dilanjutkan pada tahun 1914, dan mesin yang
pertama kali didemonstrasikan adalah mesin permainan catur. Penemu mesin ini
adalah Leonardo Torres Y
Quevedo, direktur dari Laboratorio
de Automatica di Madrid,
Spanyol. Beberapa tahun kemudian, ide permainan catur dikembangkan dan
diterapkan di komputer oleh Arthur
L. Samuel dari
IBM dan dikembangkan lebih lanjut oleh Claude
Shannon.
Artificial
Intelligence dalam Game
Salah
satu unsur yang berperan penting dalam sebuah game adalah kecerdasan buatan.
Dengan kecerdasan buatan, elemen-elemen dalam game dapat berperilaku sealami
mungkin layaknya manusia.
Game
AI adalah aplikasi untuk memodelkan karakter yang terlibat dalam permainan baik
sebagai lawan, ataupun karakter pendukung yang merupakan bagian dari permainan
tetapi tidak ikut bermain (NPC = Non Playable Character). Peranan kecerdasan
buatan dalam hal interaksi pemain dengan permainan adalah pada penggunaan
interaksi yang bersifat alami yaitu yang biasa digunakan menusia untuk
berinteraksi dengan sesama manusia. Contoh media interaksi ialah:
- Penglihatan (vision)
- Suara (voice), ucapan (speech)
- Gerakan anggota badan ( gesture)
Untuk
pembentukan Artificial Intelligence pada game ternyata digunakan pula
algoritma, yaitu jenis pohon n-ary untuk suatu struktur. Implementasi pohon
(tree) ini biasa disebut game tree. Berdasarkan game tree inilah sebuah game
disusun algoritma kecerdasan buatannya. Artificial intellegence yang disematkan
dalam sebuah game yang membentuk analisis game tree biasanya merepresentasikan
kondisi atau posisi permainan dari game sebagai suatu node, dan
merepresentasikan langkah yang mungkin dilakukan sebagai sisi berarah yang
menghubungkan node kondisi tersebut ke anak (child) sebagaimana representasi
suatu pohon (tree).
Namun,
biasanya representasi langsung tersebut mempunyai kelemahan, yaitu representasi
data pohon akan menjadi sangat lebar dan banyak. Mungkin bagi sebuah mesin
komputer mampu melakukan kalkulasi sebanyak apapun masalah, namun game tree
yang lebar dan besar memberikan beberapa masalah, antara lain konsumsi proses
memori, kapasitas penyimpanan yang cukup besar dan kinerja yang kurang pada
konsol game berspesifikasi rendah. Karena itu dibentuklah beberapa algoritma
dan penyederhanaan bagi sebuah game tree.
Pada
salah satu contoh game klasik, yaitu tic tac toe, penyederhanaan dapat
dilakukan dengan berbagai metode. Salah satu diantaranya adalah minimax. Metode
ini berhasil diterapkan dan memberikan nilai reduksi yang cukup signifikan. Dan
tidak hanya bisa digunakan secara monoton, minimax juga bisa digunakan untuk
game-game yang lebih rumit seperti catur, tentunya dengan algoritma dan
representasi berbeda.
Minimax
yang merupakan salah satu metode penerapan (implementasi) pohon n-ary pada
suatu game, menandakan bahwa implementasi struktur (pohon khusunya) sangatlah
diperlukan pada pembuatan dan penerapan Artificial Intelligence, dan tidak
menutup kemungkinan ilmu dan metode baru yang lebih canggih akan ditemukan di
masa depan.
Beberapa karakteristik dan batasan game untuk game
playing :
Dimainkan oleh 2 ( dua )
pemain: manusia dan komputer. Para pemain saling bergantian melangkah.
1.
Perfect Information Game
Kedua pemain sama-sama memiliki akses pada informasi yang lengkap tentang keadaan permainan, sehingga tidak ada informasi yang tertutup bagi lawan mainnya.
Kedua pemain sama-sama memiliki akses pada informasi yang lengkap tentang keadaan permainan, sehingga tidak ada informasi yang tertutup bagi lawan mainnya.
2.
No Determined by Chances
Tidak melibatkan faktor probabilitas, misalnya dengan menggunakan dadu.
Tidak melibatkan faktor probabilitas, misalnya dengan menggunakan dadu.
3.
No Phsychological Factors
Tidak melibatkan faktor psikologi, seperti "gertakan" (misalnya Poker)
Tidak melibatkan faktor psikologi, seperti "gertakan" (misalnya Poker)
4.
No Oversight Errors. Smart Opponen
Lawan diasumsikan pintar juga, jadi jangan mengharap lawan khilaf, sehingga terjadi salah langkah.
Lawan diasumsikan pintar juga, jadi jangan mengharap lawan khilaf, sehingga terjadi salah langkah.
Beberapa contoh permainan yang biasa digunakan sebagai contoh kasus Game Playintyle = "font-family:courier new;"> Last One Loses n
·
n-coins Grundy's Game
·
Slide-5
·
Tic-Tac-Toe


·
Checkers
·
Go
·
Nim
·
Othello
·
Chess

Pengembangan
Game
Perkembangan Game yang
pesat pada masa ini juga membutuhkan sesuatu yang berbeda pada rule
permainannya. Sebuah sistem game, jika sudah dimainkan sampai tuntas oleh
seorang player, maka ketika player yang sama memulai lagi permainan dari awal,
maka rule permainannya akan sama. namun berbeda untuk game-game yang telah ada
saat ini. sistem dalam game, dapat belajar mengenali pola permainan dari player
dan ketika player tersebut memulai permainan kembali, maka sistem ini akan
menggunakan rule yang berbeda untuk pemain yang sama ini. sehingga game menjadi
lebih menarik dan menantang untuk dimainkan.
Contoh aplikasi
kecerdasan buatan dalam bentuk game sangat banyak sekali, ada yang berbentuk
game PC, dan ada pula yang berbentuk game jaringan. Contoh aplikasi game yaitu game Tic Tac Toe.
Game Tic tac toe adalah
sebuah permainan yang menggunakan papan berukuran n baris dan n kolom sehingga
ukuran papan menjadi n x n misalkan 3 x 3.
Game ini merupakan game yang
mengasah kemampuan berpikir manusia, dimana setiap pemain harus menyusun gambar
secara vertikal, horizontal, miring kiri, dan miring kanan agar memperoleh
nilai. Apabila pemain tidak dapat membentuk formasi gambar yang diinginkan maka
permain dinyatakan kalah. Dan apabila pola gambar seimbang maka permainan
dinyatakan drow atau seri. Permainan ini mengasah kemampuan berpikir sehingga para pemain harus
melakukan tindakan yang baik dan memperhitungkan apa akibat dari tindakan yang dilakukan tersebut.
Menggunakan Heuristik di Permainan
Game yang penting tes-tempat tidur untuk algoritma
heuristik. Dua-orang game yang lebih rumit dari teka-teki yang sederhana karena
mereka melibatkan lawan tak terduga.
Minimax Prosedur
The Game of Nim: Sejumlah token ditempatkan pada meja di antara dua lawan. Pada
masing-masing gerakan pemain harus membagi tumpukan token menjadi dua tumpukan
tak kosong dari berbagai ukuran. Jadi, 6 token dapat dibagi menjadi 5 dan 1, 4
dan 2, tetapi tidak 3 dan 3. Pemain pertama yang mampu bergerak kehilangan
permainan.
Untuk sejumlah kecil token ruang pencarian dapat dicari secara mendalam.
Gambar berikut memberikan ruang lengkap untuk permainan 7-token.
Dalam permainan dua-orang, Anda harus mengasumsikan bahwa lawan Anda
memiliki pengetahuan yang sama yang Anda lakukan dan berlaku sebaik yang Anda
lakukan. Jadi pada setiap tahap permainan Anda harus menganggap lawan membuat langkah
terbaik yang tersedia. Ini adalah dasar dari prosedur minimax.
Dalam minimax, para pemain yang disebut sebagai MAX (pemain) dan MIN
(lawan). Keduanya mencoba untuk memaksimalkan gerakan mereka. MAX pemain,
mencoba untuk memaksimalkan nilainya. Dan MIN adalah lawan mencoba untuk
meminimalkan skor MAX.
Prosedur Minimax pada Pencarian Ruang Lengkap
- Label setiap tingkat dari ruang pencarian sesuai dengan yang bergerak itu di tingkat itu.
- Mulai di node daun, setiap label simpul daun dengan 1 atau 0 tergantung pada apakah itu adalah kemenangan bagi MAX (1) atau MIN (0).
- Merambat ke atas: jika negara induk MAX, memberikan MAX anak-anaknya.
- Merambat ke atas: jika negara induk MIN, MIN memberikan anak-anaknya.
Pertimbangkan grafik minimax untuk Nim permainan. Nilai di negara
masing-masing mewakili nilai negara terbaik yang pemain ini bisa berharap untuk
mencapai. Nilai-nilai yang diperoleh digunakan untuk memilih di antara
alternatif bergerak.
Heuristik Minimax
Untuk permainan yang paling tidak mungkin untuk
memperluas grafik untuk node daun. Sebaliknya strategi n-pindah
melihat-depan adalah digunakan. Ruang negara diperluas ke tingkat n.
Setiap node daun di subgraf ini diberikan nilai sesuai dengan fungsi evaluasi
heuristik. Nilai kemudian disebarkan kembali ke simpul akar. Nilai disebarkan
kembali mewakili nilai heuristik dari negara terbaik yang dapat dicapai dari
simpul tersebut.
Contoh: Program catur Samuel menggunakan jumlah tertimbang sebagai fungsi
evaluasi. Ini menggunakan algoritma pembelajaran sederhana untuk menyesuaikan
bobot setelah menang dan kerugian, sehingga program perbaikan dari waktu ke
waktu.
Prosedur Alpha-Beta
Alpha-beta pruning adalah prosedur untuk
mengurangi jumlah perhitungan dan mencari selama minimax. Minimax adalah pencarian
dua-pass, satu lulus digunakan untuk menetapkan nilai-nilai heuristik ke node
pada kedalaman ply dan yang kedua digunakan untuk menyebarkan nilai-nilai
sampai pohon.
Alpha-beta hasil pencarian secara mendalam-pertama.
Sebuah nilai alpha adalah nilai awal atau sementara terkait
dengan node MAX. Karena MAX node diberi nilai maksimum antara anak-anak mereka,
nilai alpha tidak dapat menurunkan, hanya bisa naik. Sebuah nilai beta
adalah nilai awal atau sementara terkait dengan node MIN. Karena node
MIN diberi nilai minimum antara anak-anak mereka, nilai beta tidak pernah
dapat meningkatkan, hanya bisa turun.
Misalnya, alpha node MAX = 6. Kemudian cari tidak perlu mempertimbangkan
setiap cabang yang berasal dari keturunan MIN yang memiliki nilai beta yang
kurang-dari-atau-sama dengan 6. Jadi, jika Anda tahu bahwa node MAX memiliki
alpha 6, dan Anda tahu bahwa salah satu keturunan MIN yang memiliki beta yang
kurang dari atau sama dengan 6, Anda tidak perlu mencari lebih jauh di bawah
simpul MIN. Ini disebut pemangkasan alpha.
Alasannya adalah bahwa tidak peduli apa yang terjadi di bawah simpul MIN,
tidak dapat mengambil nilai yang lebih besar dari 6. Jadi nilainya tidak dapat
diperbanyak sampai dengan (alpha) orangtua MAX nya.
Demikian pula, jika nilai beta node MIN itu = 6, anda tidak perlu mencari
lebih jauh di bawah MAX keturunan yang telah memperoleh nilai alpha dari 6 atau
lebih. Ini disebut pemangkasan beta.
Alasannya lagi adalah bahwa apa pun yang terjadi di bawah simpul MAX, tidak
dapat mengambil nilai yang kurang dari 6. Jadi nilainya tidak dapat diperbanyak
sampai dengan (beta) MIN orangtua nya.
Aturan untuk Alpha-beta Pemangkasan
- Alpha Pemangkasan: pencarian dapat dihentikan di bawah setiap simpul MIN memiliki nilai beta kurang dari atau sama dengan nilai alpha dari setiap leluhur MAX nya.
- Pemangkasan beta: Pencarian bisa dihentikan di bawah setiap simpul MAX memiliki nilai alpha lebih besar dari atau sama dengan nilai beta dari setiap leluhur MIN nya.
DAFTAR PUSTAKA
T. Sutujo, Edy Mulyanto dan Vincent Suhartono 2011 “ Kecerdasan Buatan “ , Yogyakarta: Penerbit Andi
ü
http://translate.google.co.id/translate?hl=id&langpair=en%7Cid&u=http://www.cs.trincoll.edu/~ram/cpsc352/notes/minimax.html
Artificial intelligence (siferrsa)
Artificial intelligence
Artificial Intelligence (AI) or in the Indonesian language is called artificial intelligence. Intelligence, which means bright and artificial is artificial. Artificial intelligence engine which is capable of thinking, weighing the actions taken, and able to make decisions like humans do. Several kinds of fields that use artificial intelligence expert systems, among others, computer games (games), fuzzy logic, neural networks and robotics.
Here are some definitions from the experts on artificial intelligence• H.A.Simon (1897):Artificial intelligence (AI) is an area of research, application and instructions related to programming a computer to do something in the view of man is intelligent.• Rich and Knight (1991):Artificial intelligence (AI) is a study of how to make computers do things which at present can be done better by humans.• Encyclopedia Britannica:Artificial intelligence (AI) is a branch of science in computer science knowledge mempresentasi more use of the form of symbols of the numbers, and process information based on heuristic methods or by virtue of a rule.
Purpose of Artificial Intelligence
According to Winston and Prendergast 1984 goal of artificial intelligence are:
A. Making machines become more intelligent (primary objective)2. Understand what intelligence (scientific objective)3. Make machines more useful (entrepreneurial purpose)
Advantages and Disadvantages of Artificial Intelligence
Artificial Intelligence advantages: Artificial intelligence is more permanent.Artificial intelligence easily duplicated and distributed. Artificial intelligence is consistent. Artificial intelligence can be in the documentation. Artificial intelligence can do the job faster than natural intelligence. Artificial intelligence is more efficient. Artificial intelligence can do the job better than natural intelligence.
Disadvantages of Artificial Intelligence:- Working with the input - the input symbolic.- Artificial intelligence may be used only on a limited basis.- No creative
Schools of thoughtBroadly speaking, the AI is divided into two schools of thought namely Conventional AI and Computational Intelligence (CI, Computational Intelligence). Conventional AI mostly involves methods now diklasifiksikan as machine learning, characterized by formalism and statistical analysis. Also known as symbolic AI, logical AI, AI and AI pure old fashioned way (GOFAI, Good Old Fashioned Artificial Intelligence).
Method-the method include:• Expert systems: the capability to apply judgment to reach conclusions. An expert system can process large amounts of known information and provide conclusions based on such information.• considerations based on case• Bayesian Network• behavior-based AI: a modular method to the formation of AI systems manuallyComputational intelligence involves the development or interactive learning (such as parameter tuning in connectionist systems). Learning is based on empirical data and are associated with non-symbolic AI, AI irregular and soft computing. Basic methods include:• Neural networks: systems with pattern recognition capabilities are very strong.• Fuzzy systems: techniques for consideration under uncertainty, has been used extensively in modern industrial and consumer product control systems.• Evolutionary Computation: applying concepts such as biologically inspired population, mutation and survival of the fittest to produce better solutions.These methods are mainly divided into evolutionary algorithms (eg genetic algorithms) and swarm intelligence (eg ant algorithms).With hybrid intelligent systems, experiments designed to combine these two groups. Expert inference rules can be generated through a neural network or production rules from statistical learning such as the ACT-R. A promising new approach is mentioned that the strengthening of intelligence to try to achieve artificial intelligence in the process of evolutionary development as a side effect of the strengthening of human intelligence through technology.
Soft Computing
Soft computing is an innovation in building intelligent systems are systems that have expertise in certain domains such as human beings, able to adapt and learn to work better if the environment changes. Soft computing exploits the tolerance for imprecision, uncertainty, and partial truth to be completed and controlled with ease to match reality (Prof. Lotfi Zadeh A, 1992).Methodologies used in Soft computing is:A. Fuzzy Logic / Fuzzy Logic (to accommodate the inaccuracies).2. Artificial Neural Networks / Neurall Network (using learning).3. Probabilistic Reasoning (accommodates uncertainty).4. Genetic Algorithm / Evolutionary Computing (optimization)
CONCEPT OF ARTIFICIAL INTELLIGENCE
A. Game (Game) Most of the game is done using a set of rules. In a game to use what is called the search space. alternative technique to determine the listening problems of space is something that complicated. The technique is called a heuristic. The game is an exciting field in the study of heuristic.
2. NATURAL LANGUAGEA technology that provides the ability for computers to understand human language so that computer users can communicate with computers using everyday language.
3. Robotics and SENSOR SYSTEMSensor systems, such as vision systems, tactile systems, and signal processing systems, when combined with AI, can be categorized into a broad system called robotic systems.
4. EXPERT SYSTEMExpert system (Expert System) is a computer-based advisory programs that try to mimic the thought processes and knowledge of an expert in solving specific problems.
History of Artificial Intelligence
In the early 17th century, René Descartes proposed that bodies of animals are nothing but just complicated machines. Blaise Pascal invents the first mechanical digital calculating machine in 1642. At 19, Charles Babbage and Ada Lovelace worked on mechanical calculating machines can be programmed.Bertrand Russell and Alfred North Whitehead published Principia Mathematica, which revolutionized formal logic. Warren McCulloch and Walter Pitts published "Logical Calculus of Ideas that remain in activity" in 1943 which laid the foundation for neural networks.The 1950s were a period of active efforts in AI. The first working AI programs were written in 1951 to run the Ferranti Mark I machine at the University of Manchester (UK): a game program script written by Christopher Strachey and a chess program written by Dietrich Prinz.During the 1960s and the 1970s, Joel Moses demonstrated the power of symbolic reasoning for integration problems in the Macsyma program, a successful knowledge-based program first in the field of mathematics.In the 1990s marked a big acquisition in various fields of AI and demonstrations of various applications. More specifically Deep Blue, a chess computer, beat Garry Kasparov in a game 6 of the famous game in 1997. DARPA stated that the costs saved through the application of AI methods for scheduling unit in the first Gulf War had to replace the entire investment in AI research since 1950 on the U.S. government.Great DARPA challenge, which began in 2004 and continues to this day, is a race for $ 2 million prize where the vehicle driven without communication with humans, using GPS, computers and sophisticated sensor array, several hundred miles across the desert area is challenging.
The development of Artificial Intelligence
Jacques de Vaucanson Jacques Pierre Drotz
Starting around the 18th century as machines have become more complex, the effort has attempted to create human imitation. In 1736 a French inventor Jacques de Vaucanson (1709-1782) made a flute player engine size as a man who can play 12 tone melody. Not only this course, mechanics are able to move the lips and tongue actually to control the flow of air into the flute.In 1774 a French inventor, Pierre Jacques Drotz astonish the people of Europe with an automation is about a boy who can sit down and write a note book. This discovery was followed by others, the automation in the form of a sweet girl who can play the harpsichord. Overall it was a mechanical process that performs motion with predetermined.
Humans are still trying to create another machine. In 1769, the plains of Europe were surprised by a game of chess that can address the steps the chess game that has not been determined in advance. This machine is called Chess Automation and Maelzel made by Wolfgang von Kempelan (1734-1804) of Hungary. But the machine was finally burned in 1854 in Philadelphia United Serikat.banyak people do not believe in the ability of the machine. And a writer from the United States, Edgar Allan Poe (1809-1849) wrote a refutation of the machine, he and his friends were right, that the machine is a hoax, and in fact is not aoutomation, but it is a very good construction controlled by a reliable chess players who were hiding in it.Attempt to create a game engine construction continued in 1914, and the engine was first demonstrated chess engine. This machine is the inventor Leonardo Torres Quevedo Y, director of the Laboratorio de Automatica in Madrid, Spain. Several years later, the idea of a chess game developed and implemented on a computer by Arthur L. Samuel from IBM and was further developed by Claude Shannon.In the 20th century, Automation has been developed and applied primarily in the United States armed forces, a battle simulation program. Today, the development of AI has reached the stage that can be said to be fantastic, especially in the following areas:- Game Playing- General Problem Solving- Natural Language Recognition- Speech Recognition- Visual Recognition- Robotics- And Expert Systems
Playing gamesPlaying games (game play) is a very popular field of AI in the form of a game between humans against machines that have the intellectual to think. Playing with computers is interesting, even to forget the main task is more important. Computers can react and respond to the actions provided by the opponent.
Playing games (game play) is the field of AI in the form of a game between humans against machines that have the intellectual to think. Playing with the computer are interesting even to forget the main task is more important. Computers can react and respond to the actions provided by the opponent. Thousands of kinds of computer games have been created and developed.Game is a computer game created by animation techniques and methods. AI game play is a very popular field in the form of a game between humans against machines that have the intellectual to think. Computers can react and respond to the actions provided by the opponent.One of the embedded computer AI for the game called Deep Blue. Deep Blue is a chess computer made by IBM first to win a chess game against a world champion (Garry Kasparov) in a chess tournament standards. His first victory (in the game or the first round) occurred on February 10, 1996, and is a very famous game.
Now the AI has improved a lot the game more interesting, interactive, and the graphics are very nice. Coupled with advances in computer networking technologies that are getting faster, there are a lot of game-based online game AI. Not a few people are interested in the game today. They play a game to fill their time or their skills training in thinking.
Type of Game
Detailed information = a game where the game in knowing all the steps that may occur from himself and from the opponent and the final outcome of the game. Example game: chess and tic tac toe
Incomplete information: a game where the player does not know all the possible steps opponent. Examples of game: Poker Cards and Brigde because all the cards are not known by the players.
History of Artificial Intelligence in GamesIn 1769, the plains of Europe were surprised by a game of chess that can address the steps the chess game that has not been determined in advance. This machine is called Chess Automation and Maelzel made by Wolfgang von Kempelan (1734-1804) of Hungary. But the machine was finally burned in 1854 in Philadelphia United Serikat.banyak people do not believe in the ability of the machine. And a writer from the United States, Edgar Allan Poe (1809-1849) wrote a refutation of the machine, he and his friends were right, that the machine is a hoax, and in fact is not aoutomation, but it is a very good construction controlled by a reliable chess players who were hiding in it.Attempt to create a game engine construction continued in 1914, and the engine was first demonstrated chess engine. This machine is the inventor Leonardo Torres Quevedo Y, director of the Laboratorio de Automatica in Madrid, Spain. Several years later, the idea of a chess game developed and implemented on a computer by Arthur L. Samuel from IBM and was further developed by Claude Shannon.
Artificial Intelligence in GamesOne element that plays an important role in a game is the artificial intelligence. With artificial intelligence, elements of the game can behave like human beings as natural as possible.Game AI is an application to model the characters involved in the game either as opposed to, or supporting characters who are part of the game but did not come into play (NPC = Non playable Character). The role of artificial intelligence in terms of player interaction with the game is to use interactions that are natural human family is used to interact with fellow humans. Examples of media interaction is:• Vision (vision)• Voice (voice), speech (speech)• Movement of limbs (gesture)Artificial Intelligence for the formation of the game was also used algorithm, ie n-ary tree species to a structure. Implementation of the tree (tree) is usually called a game tree. Based on the game is a game tree structured artificial intelligence algorithms. Artificial Intellegence which is embedded in a game that make up the game tree analysis usually represents a condition or position of the game from the game as a node, and represent steps that may be performed as directed sides which connect these conditions to the child node (child) as a representation of a tree (tree) .However, such direct representation usually has a weakness, namely the representation of the data tree will be very wide and many. Possible for a computer system capable of performing calculations as much as any issue, but a big game and big tree gives some problems, such as the consumption of the memory process, substantial storage capacity and performance are less on a low spec game consoles. Because it was formed a few algorithms and simplification of a game tree.On one example of the classic game, that tic tac toe, simplification can be done by various methods. One of them is minimax. The method was successfully applied and give a significant reduction. And not only can be used as monotonous, minimax also be used for games such as chess is more complicated, of course with different algorithms and representations.Minimax, which is one method of implementation (implementation) n-ary tree in a game, indicating that the implementation of the structure (especially trees) is required in the manufacture and application of Artificial Intelligence, and did not rule out the science and new, more sophisticated methods will be found in the front.
Some of the characteristics and limitations of game for game playing:Played by 2 (two) players: humans and computers. The players take turns walking.A. Perfect Information GameBoth players have the same access to complete information about the state of the game, so no information is closed to the opponent.2. Determined by No ChancesNot involve the factor of probability, for example by using dice.3. No Phsychological FactorsDoes not involve psychological factors, such as "snapping" (eg Poker)4. No Oversight Errors. Smart OpponenOpponents also assumed to be smart, so do not expect the opposite mistake, resulting in one step.
Some examples of games that are commonly used as an example the case of Game Playintyle = "font-family: courier new;"> Last One Loses n• n-coins Grundy's Game• Slide-5• Tic-Tac-Toe• Checkers• Go• Nim• Othello• Chess
The rapid development of the game at this time also need something different to the game rule. A game system, if it has been played to completion by a player, then when the same player who started the game again from scratch, then the rule will be the same game. but different for games that already exist today. system in the game, can learn to recognize patterns of play and the player when the player starts the game again, then the system will use a different rule for these same players. so the game becomes more interesting and challenging to play.
Examples of applications of artificial intelligence in the form of the game very much at all, there is a form of PC games, and some are in the form of a network game. Examples of applications that game Tic Tac Toe game.
Tic tac toe game is a game that uses a board of size n rows and n columns so that the size of a nxn board eg 3 x 3.This game is a game that human thinking skills, in which each player must make the image vertically, horizontally, left lateral, and oblique right to obtain the value. If the player can not form the desired image formation is puz declared lost. And when the image patterns otherwise balanced the game or series drow. This game thinking skills so that the players must take into account what is good and the result of the action taken.
Using Heuristics in GamesThe gameplay is an important test-bed for heuristic algorithms. Two-person game is more complicated than a simple puzzle since they involve an unexpected opponent.Minimax ProcedureThe Game of Nim: A token is placed on a table between two opponents. At each of the players have to divide the pile into two piles token was empty of any size. So, 6 tokens can be divided into 5 and 1, 4 and 2, but not 3 and 3. The first player to move loses the game.For a small token search space can be searched thoroughly. The following figure provides a space for the full 7-game token.
In a two-person game, you should assume that your opponent has the same knowledge that you are doing and apply as well as you do. So at every stage of the game you have to consider the other to make the best move available. This is the basis of the minimax procedure.In minimax, the players are referred to as MAX (players) and MIN (opponent). Both are trying to maximize their movement. MAX players, trying to maximize its value. And MIN is the opponent tries to minimize the score MAX.Minimax procedure on Complete Space SearchA. Label each level of the search space in accordance with that move it at that level.2. Starting at the leaf nodes, each leaf node labeled with a 1 or 0 depending on whether it is a win for MAX (1) or MIN (0).3. Climbing to the top: if the parent MAX, MAX gives his children.4. Climbing to the top: if the parent MIN, MIN gives his children.
Consider the graph minimax for the Nim game. The value in each state that represent the best country players can hope to achieve. The values obtained are used to choose among alternative moves.
Minimax heuristicFor most games are not likely to expand the graph to a leaf node. Instead the strategy n-move look-ahead is used. Extended state space to the level n. Each leaf node in this subgraph is assigned a value according to the heuristic evaluation function. Values are then propagated back to the root node. Redistributable value represents the heuristic value of the best attainable state of the node.
Example: Samuel chess program using a weighted sum as the evaluation function. It uses a simple learning algorithm to adjust the weights after wins and losses, so that the program improved over time.
Alpha-Beta procedureAlpha-beta pruning is a procedure to reduce the amount of computation and search for minimax. Minimax is the search for two-pass, one pass is used to assign values to the node at a depth heuristic and the second ply is used to spread the values of the tree.
Alpha-beta results in depth-first search. An alpha value is the value associated with the initial or temporary MAX node. Because the MAX node the maximum rated among their children, can not lower the alpha value, only go up. A beta value is the initial or temporary value associated with node MIN. Because the nodes are given the minimum value MIN of their children, the beta value can never increase, just get it down.For example, alpha node MAX = 6. Then search no need to consider each branch emanating from a descendant MIN has a beta value of less-than-or-equal to 6. So, if you know that have a MAX node alpha 6, and you know that one of the descendants of MIN which has a beta of less than or equal to 6, you need not look further below MIN node. This is called alpha pruning.The reason is that no matter what happens below the MIN node, can not take a value greater than 6. So its value can not be propagated to (alpha) MAX his parents.Similarly, if the MIN node's beta value = 6, you need not look further below the MAX descent who had obtained an alpha value of 6 or more. This is called beta pruning.The reason again is that no matter what happens below the MAX node, can not take values less than 6. So its value can not be propagated to (beta) MIN his parents.Rules for Alpha-beta pruning• Alpha Pruning: Search can be stopped under any MIN node has a beta value less than or equal to the alpha value of each of its MAX ancestors.• beta Pruning: Search can be stopped at the bottom of every MAX vertex alpha value greater than or equal to the beta of its MIN ancestors eachh.
CONCLUSION
Artificial Intelligence (AI) or Artificial intelligence is created and put into a machine (computer) in order to do the job as do humans. Several kinds of fields that use artificial intelligence expert systems, among others, computer games (games), fuzzy logic, neural networks and robotics.
Broadly speaking, the AI is divided into two schools of thought are: Conventional AI (AI symbolic) Computational Intelligence (AI non-symbolic)
CONCEPT OF ARTIFICIAL INTELLIGENCEA. Game (Game)2. NATURAL LANGUAGE3. Robotics and SENSOR SYSTEM4. EXPERT SYSTEM
Playing gamesGame is a computer game created by animation techniques and methods. AI game play is a very popular field in the form of a game between humans against machines that have the intellectual to think.Type of Game
More information
Incomplete information
Some examples of games:• Tic-Tac-Toe• Checkers• Othello• Chess• Card Poker
REFERENCES
T. Sutujo, Edy Suhartono Mulyanto and Vincent 2011 "Artificial Intelligence", New York: Publisher Brenda
http://ai-a-erial.blogspot.com/2011/02/aplikasi-kecerdasan-buatan.html
http://e-rara4mystudy.blogspot.com/2010/10/kecerdasan-buatan-game-playing.html
http://hennytandiono.wordpress.com/2011/04/06/artificial-intelligence/
http://id.wikipedia.org/wiki/Kecerdasan_buatan
http://lovelyploeto.blogspot.com/2011/11/kecerdasan-buatan.html
http://ndoware.com/kecerdasan-buatan.html
http://setiyanugroho.wordpress.com/2011/04/12/kecerdasan-buatan-dalam-game/
Artificial Intelligence (AI) or in the Indonesian language is called artificial intelligence. Intelligence, which means bright and artificial is artificial. Artificial intelligence engine which is capable of thinking, weighing the actions taken, and able to make decisions like humans do. Several kinds of fields that use artificial intelligence expert systems, among others, computer games (games), fuzzy logic, neural networks and robotics.
Here are some definitions from the experts on artificial intelligence• H.A.Simon (1897):Artificial intelligence (AI) is an area of research, application and instructions related to programming a computer to do something in the view of man is intelligent.• Rich and Knight (1991):Artificial intelligence (AI) is a study of how to make computers do things which at present can be done better by humans.• Encyclopedia Britannica:Artificial intelligence (AI) is a branch of science in computer science knowledge mempresentasi more use of the form of symbols of the numbers, and process information based on heuristic methods or by virtue of a rule.
Purpose of Artificial Intelligence
According to Winston and Prendergast 1984 goal of artificial intelligence are:
A. Making machines become more intelligent (primary objective)2. Understand what intelligence (scientific objective)3. Make machines more useful (entrepreneurial purpose)
Advantages and Disadvantages of Artificial Intelligence
Artificial Intelligence advantages: Artificial intelligence is more permanent.Artificial intelligence easily duplicated and distributed. Artificial intelligence is consistent. Artificial intelligence can be in the documentation. Artificial intelligence can do the job faster than natural intelligence. Artificial intelligence is more efficient. Artificial intelligence can do the job better than natural intelligence.
Disadvantages of Artificial Intelligence:- Working with the input - the input symbolic.- Artificial intelligence may be used only on a limited basis.- No creative
Schools of thoughtBroadly speaking, the AI is divided into two schools of thought namely Conventional AI and Computational Intelligence (CI, Computational Intelligence). Conventional AI mostly involves methods now diklasifiksikan as machine learning, characterized by formalism and statistical analysis. Also known as symbolic AI, logical AI, AI and AI pure old fashioned way (GOFAI, Good Old Fashioned Artificial Intelligence).
Method-the method include:• Expert systems: the capability to apply judgment to reach conclusions. An expert system can process large amounts of known information and provide conclusions based on such information.• considerations based on case• Bayesian Network• behavior-based AI: a modular method to the formation of AI systems manuallyComputational intelligence involves the development or interactive learning (such as parameter tuning in connectionist systems). Learning is based on empirical data and are associated with non-symbolic AI, AI irregular and soft computing. Basic methods include:• Neural networks: systems with pattern recognition capabilities are very strong.• Fuzzy systems: techniques for consideration under uncertainty, has been used extensively in modern industrial and consumer product control systems.• Evolutionary Computation: applying concepts such as biologically inspired population, mutation and survival of the fittest to produce better solutions.These methods are mainly divided into evolutionary algorithms (eg genetic algorithms) and swarm intelligence (eg ant algorithms).With hybrid intelligent systems, experiments designed to combine these two groups. Expert inference rules can be generated through a neural network or production rules from statistical learning such as the ACT-R. A promising new approach is mentioned that the strengthening of intelligence to try to achieve artificial intelligence in the process of evolutionary development as a side effect of the strengthening of human intelligence through technology.
Soft Computing
Soft computing is an innovation in building intelligent systems are systems that have expertise in certain domains such as human beings, able to adapt and learn to work better if the environment changes. Soft computing exploits the tolerance for imprecision, uncertainty, and partial truth to be completed and controlled with ease to match reality (Prof. Lotfi Zadeh A, 1992).Methodologies used in Soft computing is:A. Fuzzy Logic / Fuzzy Logic (to accommodate the inaccuracies).2. Artificial Neural Networks / Neurall Network (using learning).3. Probabilistic Reasoning (accommodates uncertainty).4. Genetic Algorithm / Evolutionary Computing (optimization)
CONCEPT OF ARTIFICIAL INTELLIGENCE
A. Game (Game) Most of the game is done using a set of rules. In a game to use what is called the search space. alternative technique to determine the listening problems of space is something that complicated. The technique is called a heuristic. The game is an exciting field in the study of heuristic.
2. NATURAL LANGUAGEA technology that provides the ability for computers to understand human language so that computer users can communicate with computers using everyday language.
3. Robotics and SENSOR SYSTEMSensor systems, such as vision systems, tactile systems, and signal processing systems, when combined with AI, can be categorized into a broad system called robotic systems.
4. EXPERT SYSTEMExpert system (Expert System) is a computer-based advisory programs that try to mimic the thought processes and knowledge of an expert in solving specific problems.
History of Artificial Intelligence
In the early 17th century, René Descartes proposed that bodies of animals are nothing but just complicated machines. Blaise Pascal invents the first mechanical digital calculating machine in 1642. At 19, Charles Babbage and Ada Lovelace worked on mechanical calculating machines can be programmed.Bertrand Russell and Alfred North Whitehead published Principia Mathematica, which revolutionized formal logic. Warren McCulloch and Walter Pitts published "Logical Calculus of Ideas that remain in activity" in 1943 which laid the foundation for neural networks.The 1950s were a period of active efforts in AI. The first working AI programs were written in 1951 to run the Ferranti Mark I machine at the University of Manchester (UK): a game program script written by Christopher Strachey and a chess program written by Dietrich Prinz.During the 1960s and the 1970s, Joel Moses demonstrated the power of symbolic reasoning for integration problems in the Macsyma program, a successful knowledge-based program first in the field of mathematics.In the 1990s marked a big acquisition in various fields of AI and demonstrations of various applications. More specifically Deep Blue, a chess computer, beat Garry Kasparov in a game 6 of the famous game in 1997. DARPA stated that the costs saved through the application of AI methods for scheduling unit in the first Gulf War had to replace the entire investment in AI research since 1950 on the U.S. government.Great DARPA challenge, which began in 2004 and continues to this day, is a race for $ 2 million prize where the vehicle driven without communication with humans, using GPS, computers and sophisticated sensor array, several hundred miles across the desert area is challenging.
The development of Artificial Intelligence
Jacques de Vaucanson Jacques Pierre Drotz
Starting around the 18th century as machines have become more complex, the effort has attempted to create human imitation. In 1736 a French inventor Jacques de Vaucanson (1709-1782) made a flute player engine size as a man who can play 12 tone melody. Not only this course, mechanics are able to move the lips and tongue actually to control the flow of air into the flute.In 1774 a French inventor, Pierre Jacques Drotz astonish the people of Europe with an automation is about a boy who can sit down and write a note book. This discovery was followed by others, the automation in the form of a sweet girl who can play the harpsichord. Overall it was a mechanical process that performs motion with predetermined.
Humans are still trying to create another machine. In 1769, the plains of Europe were surprised by a game of chess that can address the steps the chess game that has not been determined in advance. This machine is called Chess Automation and Maelzel made by Wolfgang von Kempelan (1734-1804) of Hungary. But the machine was finally burned in 1854 in Philadelphia United Serikat.banyak people do not believe in the ability of the machine. And a writer from the United States, Edgar Allan Poe (1809-1849) wrote a refutation of the machine, he and his friends were right, that the machine is a hoax, and in fact is not aoutomation, but it is a very good construction controlled by a reliable chess players who were hiding in it.Attempt to create a game engine construction continued in 1914, and the engine was first demonstrated chess engine. This machine is the inventor Leonardo Torres Quevedo Y, director of the Laboratorio de Automatica in Madrid, Spain. Several years later, the idea of a chess game developed and implemented on a computer by Arthur L. Samuel from IBM and was further developed by Claude Shannon.In the 20th century, Automation has been developed and applied primarily in the United States armed forces, a battle simulation program. Today, the development of AI has reached the stage that can be said to be fantastic, especially in the following areas:- Game Playing- General Problem Solving- Natural Language Recognition- Speech Recognition- Visual Recognition- Robotics- And Expert Systems
Playing gamesPlaying games (game play) is a very popular field of AI in the form of a game between humans against machines that have the intellectual to think. Playing with computers is interesting, even to forget the main task is more important. Computers can react and respond to the actions provided by the opponent.
Playing games (game play) is the field of AI in the form of a game between humans against machines that have the intellectual to think. Playing with the computer are interesting even to forget the main task is more important. Computers can react and respond to the actions provided by the opponent. Thousands of kinds of computer games have been created and developed.Game is a computer game created by animation techniques and methods. AI game play is a very popular field in the form of a game between humans against machines that have the intellectual to think. Computers can react and respond to the actions provided by the opponent.One of the embedded computer AI for the game called Deep Blue. Deep Blue is a chess computer made by IBM first to win a chess game against a world champion (Garry Kasparov) in a chess tournament standards. His first victory (in the game or the first round) occurred on February 10, 1996, and is a very famous game.
Now the AI has improved a lot the game more interesting, interactive, and the graphics are very nice. Coupled with advances in computer networking technologies that are getting faster, there are a lot of game-based online game AI. Not a few people are interested in the game today. They play a game to fill their time or their skills training in thinking.
Type of Game
Detailed information = a game where the game in knowing all the steps that may occur from himself and from the opponent and the final outcome of the game. Example game: chess and tic tac toe
Incomplete information: a game where the player does not know all the possible steps opponent. Examples of game: Poker Cards and Brigde because all the cards are not known by the players.
History of Artificial Intelligence in GamesIn 1769, the plains of Europe were surprised by a game of chess that can address the steps the chess game that has not been determined in advance. This machine is called Chess Automation and Maelzel made by Wolfgang von Kempelan (1734-1804) of Hungary. But the machine was finally burned in 1854 in Philadelphia United Serikat.banyak people do not believe in the ability of the machine. And a writer from the United States, Edgar Allan Poe (1809-1849) wrote a refutation of the machine, he and his friends were right, that the machine is a hoax, and in fact is not aoutomation, but it is a very good construction controlled by a reliable chess players who were hiding in it.Attempt to create a game engine construction continued in 1914, and the engine was first demonstrated chess engine. This machine is the inventor Leonardo Torres Quevedo Y, director of the Laboratorio de Automatica in Madrid, Spain. Several years later, the idea of a chess game developed and implemented on a computer by Arthur L. Samuel from IBM and was further developed by Claude Shannon.
Artificial Intelligence in GamesOne element that plays an important role in a game is the artificial intelligence. With artificial intelligence, elements of the game can behave like human beings as natural as possible.Game AI is an application to model the characters involved in the game either as opposed to, or supporting characters who are part of the game but did not come into play (NPC = Non playable Character). The role of artificial intelligence in terms of player interaction with the game is to use interactions that are natural human family is used to interact with fellow humans. Examples of media interaction is:• Vision (vision)• Voice (voice), speech (speech)• Movement of limbs (gesture)Artificial Intelligence for the formation of the game was also used algorithm, ie n-ary tree species to a structure. Implementation of the tree (tree) is usually called a game tree. Based on the game is a game tree structured artificial intelligence algorithms. Artificial Intellegence which is embedded in a game that make up the game tree analysis usually represents a condition or position of the game from the game as a node, and represent steps that may be performed as directed sides which connect these conditions to the child node (child) as a representation of a tree (tree) .However, such direct representation usually has a weakness, namely the representation of the data tree will be very wide and many. Possible for a computer system capable of performing calculations as much as any issue, but a big game and big tree gives some problems, such as the consumption of the memory process, substantial storage capacity and performance are less on a low spec game consoles. Because it was formed a few algorithms and simplification of a game tree.On one example of the classic game, that tic tac toe, simplification can be done by various methods. One of them is minimax. The method was successfully applied and give a significant reduction. And not only can be used as monotonous, minimax also be used for games such as chess is more complicated, of course with different algorithms and representations.Minimax, which is one method of implementation (implementation) n-ary tree in a game, indicating that the implementation of the structure (especially trees) is required in the manufacture and application of Artificial Intelligence, and did not rule out the science and new, more sophisticated methods will be found in the front.
Some of the characteristics and limitations of game for game playing:Played by 2 (two) players: humans and computers. The players take turns walking.A. Perfect Information GameBoth players have the same access to complete information about the state of the game, so no information is closed to the opponent.2. Determined by No ChancesNot involve the factor of probability, for example by using dice.3. No Phsychological FactorsDoes not involve psychological factors, such as "snapping" (eg Poker)4. No Oversight Errors. Smart OpponenOpponents also assumed to be smart, so do not expect the opposite mistake, resulting in one step.
Some examples of games that are commonly used as an example the case of Game Playintyle = "font-family: courier new;"> Last One Loses n• n-coins Grundy's Game• Slide-5• Tic-Tac-Toe• Checkers• Go• Nim• Othello• Chess
The rapid development of the game at this time also need something different to the game rule. A game system, if it has been played to completion by a player, then when the same player who started the game again from scratch, then the rule will be the same game. but different for games that already exist today. system in the game, can learn to recognize patterns of play and the player when the player starts the game again, then the system will use a different rule for these same players. so the game becomes more interesting and challenging to play.
Examples of applications of artificial intelligence in the form of the game very much at all, there is a form of PC games, and some are in the form of a network game. Examples of applications that game Tic Tac Toe game.
Tic tac toe game is a game that uses a board of size n rows and n columns so that the size of a nxn board eg 3 x 3.This game is a game that human thinking skills, in which each player must make the image vertically, horizontally, left lateral, and oblique right to obtain the value. If the player can not form the desired image formation is puz declared lost. And when the image patterns otherwise balanced the game or series drow. This game thinking skills so that the players must take into account what is good and the result of the action taken.
Using Heuristics in GamesThe gameplay is an important test-bed for heuristic algorithms. Two-person game is more complicated than a simple puzzle since they involve an unexpected opponent.Minimax ProcedureThe Game of Nim: A token is placed on a table between two opponents. At each of the players have to divide the pile into two piles token was empty of any size. So, 6 tokens can be divided into 5 and 1, 4 and 2, but not 3 and 3. The first player to move loses the game.For a small token search space can be searched thoroughly. The following figure provides a space for the full 7-game token.
In a two-person game, you should assume that your opponent has the same knowledge that you are doing and apply as well as you do. So at every stage of the game you have to consider the other to make the best move available. This is the basis of the minimax procedure.In minimax, the players are referred to as MAX (players) and MIN (opponent). Both are trying to maximize their movement. MAX players, trying to maximize its value. And MIN is the opponent tries to minimize the score MAX.Minimax procedure on Complete Space SearchA. Label each level of the search space in accordance with that move it at that level.2. Starting at the leaf nodes, each leaf node labeled with a 1 or 0 depending on whether it is a win for MAX (1) or MIN (0).3. Climbing to the top: if the parent MAX, MAX gives his children.4. Climbing to the top: if the parent MIN, MIN gives his children.
Consider the graph minimax for the Nim game. The value in each state that represent the best country players can hope to achieve. The values obtained are used to choose among alternative moves.
Minimax heuristicFor most games are not likely to expand the graph to a leaf node. Instead the strategy n-move look-ahead is used. Extended state space to the level n. Each leaf node in this subgraph is assigned a value according to the heuristic evaluation function. Values are then propagated back to the root node. Redistributable value represents the heuristic value of the best attainable state of the node.
Example: Samuel chess program using a weighted sum as the evaluation function. It uses a simple learning algorithm to adjust the weights after wins and losses, so that the program improved over time.
Alpha-Beta procedureAlpha-beta pruning is a procedure to reduce the amount of computation and search for minimax. Minimax is the search for two-pass, one pass is used to assign values to the node at a depth heuristic and the second ply is used to spread the values of the tree.
Alpha-beta results in depth-first search. An alpha value is the value associated with the initial or temporary MAX node. Because the MAX node the maximum rated among their children, can not lower the alpha value, only go up. A beta value is the initial or temporary value associated with node MIN. Because the nodes are given the minimum value MIN of their children, the beta value can never increase, just get it down.For example, alpha node MAX = 6. Then search no need to consider each branch emanating from a descendant MIN has a beta value of less-than-or-equal to 6. So, if you know that have a MAX node alpha 6, and you know that one of the descendants of MIN which has a beta of less than or equal to 6, you need not look further below MIN node. This is called alpha pruning.The reason is that no matter what happens below the MIN node, can not take a value greater than 6. So its value can not be propagated to (alpha) MAX his parents.Similarly, if the MIN node's beta value = 6, you need not look further below the MAX descent who had obtained an alpha value of 6 or more. This is called beta pruning.The reason again is that no matter what happens below the MAX node, can not take values less than 6. So its value can not be propagated to (beta) MIN his parents.Rules for Alpha-beta pruning• Alpha Pruning: Search can be stopped under any MIN node has a beta value less than or equal to the alpha value of each of its MAX ancestors.• beta Pruning: Search can be stopped at the bottom of every MAX vertex alpha value greater than or equal to the beta of its MIN ancestors eachh.
CONCLUSION
Artificial Intelligence (AI) or Artificial intelligence is created and put into a machine (computer) in order to do the job as do humans. Several kinds of fields that use artificial intelligence expert systems, among others, computer games (games), fuzzy logic, neural networks and robotics.
Broadly speaking, the AI is divided into two schools of thought are: Conventional AI (AI symbolic) Computational Intelligence (AI non-symbolic)
CONCEPT OF ARTIFICIAL INTELLIGENCEA. Game (Game)2. NATURAL LANGUAGE3. Robotics and SENSOR SYSTEM4. EXPERT SYSTEM
Playing gamesGame is a computer game created by animation techniques and methods. AI game play is a very popular field in the form of a game between humans against machines that have the intellectual to think.Type of Game
More information
Incomplete information
Some examples of games:• Tic-Tac-Toe• Checkers• Othello• Chess• Card Poker
REFERENCES
T. Sutujo, Edy Suhartono Mulyanto and Vincent 2011 "Artificial Intelligence", New York: Publisher Brenda
http://ai-a-erial.blogspot.com/2011/02/aplikasi-kecerdasan-buatan.html
http://e-rara4mystudy.blogspot.com/2010/10/kecerdasan-buatan-game-playing.html
http://hennytandiono.wordpress.com/2011/04/06/artificial-intelligence/
http://id.wikipedia.org/wiki/Kecerdasan_buatan
http://lovelyploeto.blogspot.com/2011/11/kecerdasan-buatan.html
http://ndoware.com/kecerdasan-buatan.html
http://setiyanugroho.wordpress.com/2011/04/12/kecerdasan-buatan-dalam-game/
Langganan:
Postingan (Atom)